95 research outputs found

    Maternal smoking during pregnancy and childhood obesity: results from the CESAR Study.

    No full text
    Childhood obesity is a worldwide public health concern. Recent studies from high income countries have demonstrated associations between maternal smoking during pregnancy and children's excess body weight. We examine associations between maternal smoking during pregnancy and children's overweight or obesity, in six countries in the less affluent Central/Eastern European region. Questionnaire data were analysed, for 8,926 singleton children aged 9-12 years. Country-specific odds ratios for effects of maternal smoking during pregnancy on being overweight, and on obesity, were estimated using logistic regression. Heterogeneity between country-specific results, and mean effects (allowing for heterogeneity) were estimated. Positive associations between maternal smoking and overweight were seen in all countries but Romania. While not individually statistically significant, the mean odds ratio was 1.26 (95% CI 1.03-1.55), with no evidence of between-country heterogeneity. Obese children were few (2.7%), and associations between obesity and maternal smoking during pregnancy were more heterogeneous, with odds ratios ranging from 0.71 (0.32-1.57) in Poland to 5.49 (2.11-14.30) in Slovakia. Between-country heterogeneity was strongly related to average persons-per-room, a possible socioeconomic indicator, with stronger associations where households were less crowded. Estimates of dose-response relationships tended to be small and non-significant, even when pooled. Our results provide evidence of a link between maternal smoking in pregnancy and childhood overweight. Associations with obesity, though strong in some countries, were less consistent. Maternal smoking may confer an addition to a child's potential for obesity, which is more likely to be realised in affluent conditions

    Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts.

    Get PDF
    Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure

    Hypertension and Exposure to Noise near Airports (HYENA): Study Design and Noise Exposure Assessment

    Get PDF
    An increasing number of people live near airports with considerable noise and air pollution. The Hypertension and Exposure to Noise near Airports (HYENA) project aims to assess the impact of airport-related noise exposure on blood pressure (BP) and cardiovascular disease using a cross-sectional study design. We selected 6,000 persons (45–70 years of age) who had lived at least 5 years near one of six major European airports. We used modeled aircraft noise contours, aiming to maximize exposure contrast. Automated BP instruments are used to reduce observer error. We designed a standardized questionnaire to collect data on annoyance, noise disturbance, and major confounders. Cortisol in saliva was collected in a subsample of the study population (n = 500) stratified by noise exposure level. To investigate short-term noise effects on BP and possible effects on nighttime BP dipping, we measured 24-hr BP and assessed continuous night noise in another sub-sample (n = 200). To ensure comparability between countries, we used common noise models to assess individual noise exposure, with a resolution of 1 dB(A). Modifiers of individual exposure, such as the orientation of living and bedroom toward roads, window-opening habits, and sound insulation, were assessed by the questionnaire. For four airports, we estimated exposure to air pollution to explore modifying effects of air pollution on cardiovascular disease. The project assesses exposure to traffic-related air pollutants, primarily using data from another project funded by the European Union (APMoSPHERE, Air Pollution Modelling for Support to Policy on Health and Environmental Risks in Europe)

    Hypertension and Exposure to Noise Near Airports: the HYENA Study

    Get PDF
    We compare two approaches for high-level power estimation of DSP components implemented in FPGAs for different sets of data streams from real-world applications. The first model is a power macro-model based on the Hamming distance of input signals. The second model is an analytical high-level power model based on switching activity computation and knowledge about the component’s internal structure, which has been improved to also consider additional information on the signal distribution of two consecutive input vectors. The results show that the accuracy of both models is, in most cases, within 10% of the low-level power estimates given by the tool XPower when cycle-bycycle input signal distributions are taken into account, and that the difference between the model accuracies depends significantly on the nature of the signals. Additionally, the effort required for the characterization and construction of the models for different component structures is discussed in detail

    Advancing Global Health through Environmental and Public Health Tracking.

    Get PDF
    Global environmental change has degraded ecosystems. Challenges such as climate change, resource depletion (with its huge implications for human health and wellbeing), and persistent social inequalities in health have been identified as global public health issues with implications for both communicable and noncommunicable diseases. This contributes to pressure on healthcare systems, as well as societal systems that affect health. A novel strategy to tackle these multiple, interacting and interdependent drivers of change is required to protect the population's health. Public health professionals have found that building strong, enduring interdisciplinary partnerships across disciplines can address environment and health complexities, and that developing Environmental and Public Health Tracking (EPHT) systems has been an effective tool. EPHT aims to merge, integrate, analyse and interpret environmental hazards, exposure and health data. In this article, we explain that public health decision-makers can use EPHT insights to drive public health actions, reduce exposure and prevent the occurrence of disease more precisely in efficient and cost-effective ways. An international network exists for practitioners and researchers to monitor and use environmental health intelligence, and to support countries and local areas toward sustainable and healthy development. A global network of EPHT programs and professionals has the potential to advance global health by implementing and sharing experience, to magnify the impact of local efforts and to pursue data knowledge improvement strategies, aiming to recognise and support best practices. EPHT can help increase the understanding of environmental public health and global health, improve comparability of risks between different areas of the world including Low and Middle-Income Countries (LMICs), enable transparency and trust among citizens, institutions and the private sector, and inform preventive decision making consistent with sustainable and healthy development. This shows how EPHT advances global health efforts by sharing recent global EPHT activities and resources with those working in this field. Experiences from the US, Europe, Asia and Australasia are outlined for operating successful tracking systems to advance global health

    Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe

    Get PDF
    MCC Collaborative Research Network: Souzana Achilleos (Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus), Jan Kyselý (Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic), Ene Indermitte (Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia), Jouni J K Jaakkola and Niilo Ryti (Center for Environmental and Respiratory Health Research, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland), Mathilde Pascal (Santé Publique France, Department of Environmental Health, French National Public Health Agency, Saint Maurice, France), Antonis Analitis (Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece), Klea Katsouyanni (School of Population Health and Environmental Sciences, King’s College, London, UK), Patrick Goodman (Technological University Dublin, Dublin, Ireland), Ariana Zeka (Institute for the Environment, Brunel University London, London, UK), Paola Michelozzi (Department of Epidemiology, Lazio Regional Health Service, Rome, Italy), Danny Houthuijs and Caroline Ameling (National Institute for Public Health and the Environment, Centre for Sustainability and Environmental Health, Bilthoven, Netherlands), Shilpa Rao (Norwegian institute of Public Health, Oslo, Norway), Susana das Neves Pereira da Silva and Joana Madureira (Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal), Iulian-Horia Holobaca (Faculty of Geography, Babes-Bolay University, Cluj-Napoca, Romania), Aurelio Tobias (Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain), Carmen Íñiguez (Department of Statistics and Computational Research, Universitat de València, València, Spain), Bertil Forsberg (Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden), and Martina S Ragettli (Swiss Tropical and Public Health Institute, Basel, Switzerland).Online publication has been corrected. Correction available online 2 July 2024 https://doi.org/10.1016/S2542-5196(23)00171-7Background: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.Funding: The study was funded by Medical Research Council of the UK (MR/V034162/1 and MR/R013349/1), the Natural Environment Research Council UK (NE/R009384/1), the EU’s Horizon 2020 (820655), and the EU’s Joint Research Center (JRC/SVQ/2020/MVP/1654). AU and JK were supported by the Czech Science Foundation (22–24920S). VH has received funding from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (101032087).info:eu-repo/semantics/publishedVersio
    corecore